324453 (25)

BE ($4^{\text {th }}$ Semester)
Examination, Nov.-Dec., 2021

Branch : Elect.

NETWORK ANALYSIS \& SYNTHESIS (NEW)

Time Allowed : Three Hours
Maximum Marks : 80
Minimum Pass Marks : 28
Note : Part (a) of each question is compulsory. Attempt
any two from (b), (c), (d).

Unit-I

Q. 1. (a) Represent methematically and graphically
the following continuous time signals :
2
(i) Unit step
(ii) Ramp
(iii) Impulse
(b) For the circuit shown in fig., find the voltage
across the 1Ω resistor when the switch S is
opened at $\mathrm{t}=0$. Assume there is no charge
on the capacitor and no current in the inductor before switching.

(c) For the fig shown below, the switch S is in
position a for long time and moved to position
B at $t=0$. Obtain the values of i_{L}, V_{C} and their
first derivatives at $t=0^{+}$.

(d) With switch k in position a, the network shown attain equilibrium. At time $t=0$, the switch is moved to position b. Find the voltage across R_{2} as a function of time. 7

Q. 2. (a) Define all the transfer functions of the two port network ?
(b) If the switch ' k ' is closed at $t=0$, find the current $i(t)$ through R_{L} by using Laplace transform and Thevenin's theorem. 7

(c) The network and its pole zero plot of $z(s)$ is shown in fig.

The impedance has the form
$z(s)=\frac{k\left(s-z_{1}\right)}{\left(s-p_{1}\right)\left(s-p_{2}\right)}$

If $Z(J \circ)=1$, find the values of R, L and C.
(5)
(d) For the network shown, find the voltage
gain.
7

Unit-III
Q. 3. (a) Draw the equivalent circuit of a 2-port network in terms of z parameters.
(b) Find z parameter for the reciprocal and
symmetric two-port network shown below. 7

(6)

(c) Find ' y ' parameters. State whether the network is symmetrical and reciprocal. 7

(d) (i) For a network to be reciprocal show
that $A D-B C=1$. Where A, B, C and D
are the transmission parameters.
3
(ii) Derive the condition (or result) for cascaded connection of two port networks. 4

Unit-IV

Q. 4. (a) Write the properties of R-Lb impedance functions. 2
(b) (i) Determine the range of β such that the polynomial

$$
P(s)=s^{4}+s^{3}+4 s^{2}+\beta s+3 \text { is Hurwitz }
$$

(ii) Define the positive real function and mention its properties.
(c) An impedance function has the pole zero pattern shown below. If $z(-2)=-\frac{130}{16}$, synthesize the impedance in Foster II forms.

(d) An impedance function is given by $Z(s)=\frac{s(s+2)(s+5)}{(s+1)(s+4)}$. Find the R-L presentation of Cauer-I and II forms.

Unit-V

Q. 5. (a) Define all the parameters of a filter.
(b) A T-section low pass filter has series inductance 80 mH and shunt capacitance $.022 \mu \mathrm{~F}$. Determine the cut-off frequency and nominal design impedance. Also design on equivalent π-section. 7
(c) Design a T -section constant k -high pass filter having cutoff frequency of 10 kHz and design impedance of 600Ω. Find its characteristic impedance and phase constant at 25 kHz .
(d) Define m -derivd filters. Derive the expressions of m-derived band-pass filters: 7

